Journal of Organometallic Chemistry 124 (1977) 37-47 © Elsevier Sequoia S A, Lausanne – Printed in The Netherlands

MASSENSFEKTROMETRISCHE-, DTA- UND TG-UNTERSUCHUNGEN AN EISENCARBONYLCHALKOGENIDEN $Fe_2(CO)_6X_2$ (X = S, Se) UND $Fe_3(CO)_9X'_2$ (X' = S, Se, Te)

M K CHAUDHURI * A HAAS * M ROSENBERG **, M VELICESCU *** und N WELCMAN *

Ruhr Universitat Bochum Postfach 2148 4630 Bochum (BRD) (Eingegangen den 18 Juni 1976)

Summary

Mass spectra of $Fe_3(CO)_{9}X_2$ (X = S, Se, Te) and $Fe_2(CO)_{6}X'_2$ (X' = S, Se) are recorded and their fragmentation pattern given The thermal decarbonylation has been studied using DTA/TG methods in the temperature range 25–600°C The results are compared with those obtained from mass-spectroscopic studies X-ray and magnetic measurements have been carried out on the residues obtained in the decarbonylation process

Zusammenfassung

Massenspektren von $Fe_3(CO)_9X_2$ (X = S, Se, Te) und $Fe_2(CO)_6X'_2$ (X' = S, Se) wurden aufgenommen und ihre Fragmentierungsmuster angegeben Die thermische Decarbonylierung wurde mittels der DTA/TG-Methoden im Temperaturbereich von 25 bis 600°C untersucht. Die Ergebnisse werden mit denen der massenspektroskop:schen Untersuchungen verglichen Rontgenographische und magnetische Messungen wurden an den Produkten des Decarbonylierungsprozesses durchgeführt.

Einleitung

Massenspektroskopische Untersuchungen an $Fe_3S_2(CO)_8L$ (L = CO, P(C₆H₅)₃, CH₃CN) haben gezeigt, dass in allen drei Verbindungen zunächst L und dann die CO-Liganden nacheinander abgespaltet werden. Als stabilstes Bruchstück tritt jeweils $Fe_3S_2^*$ auf [2,3]. Ganz analog verlauft auch die Fragmentierung von $Fe_2(CO)_6E_2$ (E = S, Se) und $Fe_3(CO)_9E_2'$ (E' = S, Se, Te). Auch hier tritt jeweils

^{*} Lehrstuhl für Anorganische Chemie II.

^{**} Institut für Exgeomentalphysik.

^{***} Institut für Werkstoffe der Elektrotechnik.

 $Fe_2E_2^*$ bzw Fe_3E_2'' als "Basispeak" auf Durch vorsichtigen, gezielten, thermischen Abbau der Eisencarbonylchalkogenide sollte versucht werden, die im Metall--Chalkogen-Phasendiagramm nicht auftretenden neuen Phasen der Zusammensetzung Fe_3X_2 zu synthetisieren und zu charakterisieren Metall--Chalkogenid-Verbindungen der Zusammensetzung M_3X_2' sind nur in den Phasendiagrammen Ni-S, Ni-Se entdeckt worden [4,5] mit vermutlich rhomboedrischer Struktur [5].

Experimenteller Teil

Die Synthese der Eisencarbonylchalkogenide $Fe_2(CO)_6E_2$ [1] (E = S, Se) und $Fe_3(CO)_9X_2$ (X = S [2], Se [1], Te [1]) erfolgt nach literaturbekannten Verfahren

Massenspektroskopische Untersuchungen sind mit einem Varian MAT-CH 5-Spektrometer bei einer Energie von 70 eV und einem Emissionsstrom von 100 uA durchgefuhrt worden Die thermischen Zersetzungsprozesse sind mit einer kombinierten DTA/TG-Anlage (Linseis-L 81) in einer Argon Atmosphare bei 760 Torr vorgenommen worden Im Temperaturbereich 20 bis 1000°C werden 10 bis 50 mg der Ausgangsverbindungen in einem Platintiegel mit einer Geschwindigkeit von 2 bis 20°C/Minute aufgeheizt Als Vergleichsmaterial dient für die DTA-Messungen Al₂O₃ Die relativen Amplituden der DTA-Maxima sind mit einem PtRh--Pt Thermoelement gemessen und für ein Mol der Substanz in den Abbildungen eingetragen. Die festen Pyrolyseendprodukte werden durch Rontgenaufnahmen in der Guinier-Technik (Fabrikat Enraf Nonius) mit Co- K_{α} -Strahlen charakterisiert bzw. identifiziert.

Die Temperaturabhangigkeit der magnetischen Suszeptibilität ist mit einer Bruker-Faraday Waage ermittelt worden

Massenspektren

Die Massenspektren der Verbindungen $Fe_3(CO)_9X_2$ (X = S, Se, Te) zeigen ein sehr einheitliches Fragmentierungsschema. In allen Spektren tritt primar der Molekulpeak auf, gefolgt von 9 Signalen ahnlicher Intensitat, die durch den sukzessiven Abbau von CO-Gruppen hervorgerufen werden. Alle drei Molekule zeigen dann als intensivsten Peak $Fe_3X_2^+$, dass dann unter Fe-Abspaltung in $Fe_2X_2^+$ ubergeht, so dass aufgrund der in Tabelle 1 angegebenen Bruchstücke nachfolgendes Abbauschema angegeben werden kann

$$Fe_{3}(CO)_{9}X_{2} \rightarrow Fe_{3}(CO)_{9}X_{2}^{*} \rightarrow Fe_{3}(CO)_{n}X_{2}^{*} + 9 - nCO^{*}$$

$$\downarrow$$

$$Fe_{3}X_{2}^{*} \rightarrow Fe_{2}X_{2}^{*} \rightarrow Fe_{2}X^{*} \rightarrow Fe_{2}^{*} \rightarrow Fe^{*}$$

Fur X = S, Se wird dieses Fragmentierungsschema vollstandig durch das Auftreten von metastabilen Peaks gestützt. Im Falle von X = Te ist das gemessene Spektrum weniger intensiv und es werden nur vier metastabile Peaks beobachtet. In Tabelle 2 sind die metastabilen Übergänge für $Fe_3(CO)_9X_2$ (X = S, Se, Te) angegeben

Natürliches Eisen bzw. Schwefel enthalten unter anderem die Isotope ⁵⁴Fe (5 90%), ⁵⁶Fe (91.91%) bzw. ³²S (95 0%), ³⁴S (4.2%) Diese treten im Massen-

TABELLE 1

Zuordnung	X = S					X = Se		X = Te	
	m/L	Intensität (%)	[<i>W</i> -2]/[<i>W</i>]	[M+2]/[M]	m/e	Intensität (%)	m/c	Intensitā (%)	
Fe ₃ X ₂ (CO) ₉ ⁺	484	3 80	018	0 1 1 8	578	101	676	158	
Fe3 22 (CO)8*	456	28 0/24 0	019	0117	550	34 4	648	22 2	
Fe3X2(CO)7	428	21 2	019	0 1 1 4	522	22 0	620	22.0	
Fe1X2(CO)6	400	120	018	0118	494	114	592	70	
Fe3X2(CO)5*	372	123	019	0114			564	66	
FeaXa(CO)4	344	116	0 1 9	0 108	438	16 4	536	22 3	
FeaX2(CO)	316	46 7	0 1 9	0 1 0 9	410	48 2	508	29 0	
Fe3 X2 (CO)2	288	38 8	018	0 105	382	28 8	480	199	
Fe ₃ X ₂ (CO) ⁺	260	26 9	0 19	0 111	354	24 3	452	186	
Fe3X2	232	100	019	0 098	326	100 0	424	100	
Fe3X*	200	27	_	_	248	22		—	
Fe2X2*	176	477	013	0 092	270	46 5	368	464	
FeX2*			_	-	-	—	312	49	
Fe ₂ X	144	28 9	011	0 047	192	50	240	82 9	
FeX*		_			136	114	184	88	
Fe2 ⁺	112	91	012		112	152	112	26 2	
Fe	56	46 5	0 06	_	56	941	56	57 2	
Fe ₃ X ₂ [↔]	116	157	-	-	163	11 2	212	66	

MASSENSPEKTREN VON Fe3(CO)9X2

spektrum im Intensitatsverhaltnis ihrer Haufigkeit auf Deshalb kann man aus dem Massenverhaltnis (M - 2)/M auf die Anzahl der Fe-Atome bzw. aus (M + 2)/M auf die der S Atome in einem bestimmten Bruchstuck schliessen, vorausgesetzt, dass keine Überlappung mit anderen Signalen gleicher Masse auftritt. Die bei Fe₃(CO)₉S₂ in Tabelle 1 angegebene Werte sind zur Ermittlung der Zusammensetzung der Bruchstucke herangezogen worden. Um den Einfluss der Pyrolyse auf die Fragmentierung abschatzen zu konnen, sind für X = S Massenspektren bei verschiedenen Temperaturen und Elektronenenergien aufgenommen worden. Die ermittelten Werte sind für einige charakteristische Bruchstücke in Tabelle 3

TABELLE 2 METASTABILE ÜBERGÄNGE FÜR F®3(CO)9¥2

S (m/e i	Se (m/e)*	$Te(m/e)^*$	Prozess	Abgespaltenes Neutralteilchen
429 7	523 5	—	Fe ₃ Y ₂ (CO)9 ⁺ → Fe ₃ Se ₂ (CO)8 ⁺	co
401.6	495 4		$Fe_3Y_2(CO)_8^+ \rightarrow Fe_3Se_2(CO)_2^+$	CO
373 9	467 4	—	Fe3Y2(CO)7 → Fe3Se2(CO)6	CO
345 9	439 B		$Fe_3Y_2(CO)_6^+ \rightarrow Fe_3Se_2(CO)_5^+$	CO
318 2	411 6		$Fe_3Y_2(CO)_5^+ \rightarrow Fc_3Se_2(CO)_4^+$	co
290 3	383 8		$Fe_3Y_2(CO)_4^+ \rightarrow Fe_3Se_2(CO)_3^+$	co
262.5	356 0	_	Fe3Y2(CO)3 +→ Fe3Se2(CO)2+	co
234.7	328.0	425.6	FerY2(CO)2 → FerSe2(CO)	co
207.0	300 2	397 8	Fe3 Y2(CO) +Fe35e2	60
133.5	223.6	319.3	Fe3Y2 + Fe2Se2	Fe
117.8	135 5	156 5	Fe2Y2 - Fe2Se	Ŷ
87.3	55.3		Ft., T → Ft.	¥

Temp (°C)	Intensität							
	m/e	m/e	m/e	m/e	eV			
	176	232	316	456				
21	2 (2) ^a	4 (4)	2 (2)	1 (1)	52 (70)			
60	22	4	2	1	52			
80	10	14	22	1	52			

INDEDDE 3			
TEMPERATURABHÄNGIGKEIT DES	MASSESPEKTRUMS	VON	Fe3(CO)9S2

^a Daten in Klammern bezogen auf 70 eV

aufgefuhrt. Die Ergebnisse zeigen, dass die Anderung der Elektronenenergie von 70 auf 52 eV keinen Einfluss auf die relativen Intensitaten hat Temperaturanderung bei konstanter Elektronenenergie führt jedoch zu einer Verschiebung der Intensitatsverhaltnisse fur die Bruchstucke $Fe_3S_2^+$ und $Fe_2S_2^+$. Diese Anderungen werden durch einen Pyrolyseeffekt hervorgerufen Analog durchgefuhrte Untersuchungen für X = Te zeigen, dass hier die Pyrolyse keinen bermerkenswerten Einfluss auf die Fragmentierung ausubt Vergleicht man das Intensitatsverhaltnis $[Fe_3(CO)_9E_2]^*/Fe_3E_2'^+$, so nimmt dieses von S zum Te zu Dies wird durch eine wachsende Stabilität von $Fe_3(CO)_9X_2$ in der Reihenfolge S < Se < Te erklart. Das zunehmende Intensitätsverhaltnis $[Fe_3X_2]^*/[Fe_3X_2]^{2^*}$ weist auf eine entsprechende Zunahme des dritten Ionisierungspotentials der $Fe_3E_2^+$ Molekule in der Folge S < Se < Te hin.

Eine dem Fe₃(CO)₉X₂ ähnliche Fragmentierung erfahrt auch Fe₂(CO)₆X₂' wahrend massenspektroskopischer Untersuchungen. Fur X' = S und Se beobachtet man den entsprechenden Molekulpeak, gefolgt von 6 weiteren Signalen, die in Abständen von je 28 Masseneinheiten aufeinander folgen Als starkstes Signal tritt bei m/e 176 Fe₂S₂⁺ bzw bei 272 Fe₂Se₂⁺ als Basispeak auf. Der Abbau beider Molekule wird durch nachfolgendes Fragmentierungsschema wiedergegeben

· - '

TABLLLE 4

MASSENSPEKTREN VON Fe2X(CO)6X2

Zuordnung	X = S					X = Se		
	m/e	Intensitat (%)	[M-2]/[M]	[M+2]/[M]	m/e	Intensıtät (%)		
Fe2X2 (CO)6*	344	32.4	012	0111	440	56 4		
Fe1X1 (CO)5*	316	12.6	010	0.079	412	20 4		
Fe ₂ X ₂ (CO) ₄ *	288	72	013	0 097	384	18 8		
Fe2X2 (CO)3*	260	62	013	0 096	356	164		
Fe ₂ X ₂ (CO) ₂ *	232	201	0 11	0 099	328	32.3		
Fe2X2 (CO)*	204	46 1	013	0.097	300	58,7		
Fer Xa	176	190	9-13	0.698	272	100		
Felt			_	-	358	5.3		
Fe-X	344	36.3	- 3:33~	9,252	152	56.5		
Fat	33	il.i	Z22	4.051	- 536	23.5		
Fe2	112	15,9	0.12		112	146		
Fet	56	46,3	0.06		56	91 0		

TADELLE 2

X = S	X = Se	Prozess	Abgespaltenes	
(m/e) [*]	(m/e) [*]		Neutratenchen	
290 3	385 7	$Fe_2 \chi_2(CO)_6^* \rightarrow Fe_2 \chi_2(CO)_5^*$	CO	
262 5	357 8	$Fe_2X_2(CO)_5^+ \rightarrow Fe_2X_2(CO)_4^+$	CO	
234 8	330 0	$Fe_2X_2(CO)_4^* \rightarrow Fe_2X_2(CO)_3^*$	CO	
207 0	302 3	$Fe_2X_2(CO)_3^+ \rightarrow Fe_2X_2(CO)_2^+$	co	
1793	274 3	$Fe_2X_2(CO)_2^* \rightarrow Fe_2X_2(CO)^*$	со	
1519	246 7	$Fe_2X_2(CO)^* \rightarrow Fe_2X_2^*$	со	
1178	135 5	$Fe_2X_2^* \rightarrow Fe_2X^*$	x	
871	65 3	Fe ₂ X ⁺ → Fe ₂ ⁺	x	
28 0	28 0	Fe ² → Fe [*]	Fe	
71 3	_	$Fe_2X_2^* \rightarrow Fe^{2*}$	2 X	

TABELLE 5 METASTAPILE ÜBERGÄNGE FÜR Fe2(CO)«X2

TABELLE 6

TEMPERATURABHÄNGIGKEIT DES MASSENSPEKTRUMS VON Fe2(CO)6S2

Temp (°C)	Intensität	Intensität								
	m/e 144	<i>m/e</i> 176	m/e 204	m/e 344	eV					
17	1 (1)	3 (3)	16(14)	1 (1)	52 (70)					
40	1	31	17	1	52					
50	1	28	14	1	52					

^a Daten in Klammern bezogen auf 70 eV

$$Fe_{2}(CO)_{6}X_{2}^{\prime *} \rightarrow Fe_{2}(CO)_{n}X_{2}^{\prime *} + 6 - n CO$$

$$\downarrow$$

$$Fe_{2}X_{2}^{\prime *} \rightarrow Fe_{2}X^{\prime *} \rightarrow Fe_{2}^{*} \rightarrow Fe^{*}$$

Die beobachteten metastabilen Ubergange stutzen das aufgeführte Zerfalkschema. Massenspektren und metastabile Ubergange sind in Tabelle 4 und 5 angegeben. Die Werte (M-2)/M bzw (M+2)/M geben Hinweise auf die Anzahl der Fe- bzw. S-Atome im Bruchstuck Die in Tabelle 6 aufgeführten Messergebnisse verdeutlichen, dass ahnlich wie bei Fe₃(CO)₉Te₂ auch fur Fe₂(CO)₆X₂' Pyrolyse keiner bedeutenden Einfluss unter den experimentellen Bedingungen auf die Fragmentierung ausubt.

Die massenspektroskopischen Untersuchungen zeigen, dass in den untersuchten Eisencarbonylchalkogeniden die C--O-Bindung stabiler ist als die Fe--C-Bindung.

Thermische Zersetzung

Die massenspektroskopischen Ergebnisse lassen vermuten, dass die Verbindungen Fe_3E_2 (E = S, Se, Te) stabil sein konnten. Thermogravimetrische Untersuchungen sollten weitere Beweise für die Existanz von Fe_3E_2 liefern

Aus dem Thermogramm von $Fe_3(CO)_9S_2$ im Temperaturbereich 25–600°C, Fig. 1, ist zu erkennen, dass der Zersetzungsprozess mit einer endothermen Warmetonung von 105 bis 220°C verlauft und zwei Stufen in der Zersetzungsgeschwin digkeit aufweist. Nach der ermittelten Gewichtsanderung werden 7 CO bis 170°C und die restlichen 2 CO bis 230°C abgespalten. Die erste Stufe der CO-Abspaltung ist durch die endotherme Warmetonung mit einem Maximum bei 138°C und die zweite durch eine ebenfalls endotherme Warmetonung mit einem Maximum bei 213°C gekennzeichnet Das Verhaltnis zwischen den beiden Warmetönungen beträgt 3 45 Dies entspricht einem Verhältnis von 7/2 der in jeder Stufe angegebenen CO-Menge. Weitere bei 116°C und 170°C auftretende endotherme Maxima begleiten den Zersetzungsprozess Bei 230°C ist die Decarbonylierung vollständig, wie die Gewichtsänderung von 52 20% (berechnet 52 11%) beweist. Erwärmt man weiter, so treten bei konstant bleibendem Gewicht zwei weitere reversible Maxima in der DTA-Kurve auf Sie entstehen durch magnetische oder kristallographische Phasenumwandlungen

Die rontgenographischen Untersuchungen der aus der DTA/TG/DTG-Anlage erhaltenen Rückstande führen zu folgenoen Ergebnissen Bis 240°C zeigen die erhaltenen Pyrolyseruckstande des Fe₃(CO)₉S₂ keine Rontgen-Interferenzspektra, da die Kristallite der wahrend der Zersetzung neugebildeten Phasen Abmessungen haben, die unter dem Auflosungsvermogen der Guinier-Kamera liegen. Bei 240°C entstehen FeS und Fe, deren Rontgen-Interferenzlinien verbreitet sind Das literaturbekannte Fe_{1-x}S mit x = 0 12 (Pyrrhoiste) bis x = 0 (Trollite) gibt sehr ähnliche Röntgenspektren [6] Da innerhalb des Temperaturbereichs 230 bis 270°C eine sehr kleine Verschiebung der d-Werte und der Intensitäten auftreten, kann man annehmen, dass, je hoher die Zersetzungstemperatur ist, um so grössere x in der Verbindung Fe_{1-x}S auftreten Anhand dieser Feststellung kann man das reversible DTA-Maximum bei 315°C der magnetischen Umwandlung von Fe_{1-x}S zuordnen Die Curie-Temperaturen für Fe_{1-x}S betragen 327°C für x = 0 05 und 319°C für x = 0 [7].

Der Fe-Nachweis wird auch durch die DTA-Analyse erbracht. Bei 777°C (Lit. 770°C [8]) tritt die Curie-Temperatur des Eisens auf Auch der Phasenubergang

 α -Fe $\rightarrow \delta$ -Fe bei 920°C (Lit 910°C [8]) ist durch ein scharfes reversibles Maximum gekennzeichnet.

Im Zersetzungsprozess von $Fe_3(CO)_9S_2$ ergeben sich keine Anhaltspunkte für das Auftreten von Fe_3S_2 als stabile Verbindung

Das Thermogramm von Fe₃(CO)₉Se₂ (Fig. 2) zeigt, dass die Pyrolyse dieser Verbindung einen ahnlichen Verlauf wie die des Fe₃(CO)₉S₂ hat Die stufenweise Abspaltung der CO verlauft zwischen 90 und 220°C, wobei bis 170°C 8 CO abgespalten werden. Der Zersetzungsprozess ist endotherm mit einem Maximum bei 134°C.

Die Pyrolyse von $Fe_3(CO)_9Te_2$ (Fig 3) ist ebenfalls endotherm mit einem Maximum bei 172°C. Die Abspaltung von CO findet nicht mehr stufenweise statt und ist bei 210°C beendet

Die Rontgenaufnahmen der Pyrolyseruckstande von Fe₃(CO)₉Se₂ bzw Fe₃-(CO)₉Te₂ zeigen, dass sich oberhalb 220 bzw. 210°C FeSe und Fe bzw. FeTe₀, sowie beim Fe₃(CO)₉Te₂ eine unbekannte Phase bilden. Wahrend sich bei der Zersetzung von Fe₃(CO)₉Se₂ das Eisen als selbstandige Phase von der Verbindung trennt, kann fur Fe₃(CO)₉Te₂ diese Beobachtung nicht gemacht werden Auch in den DTA-Kurven fehlen für Fe₃(CO)₉Te₂ die charakteristische Curie-Temperatur bei 770°C und der Phasenubergang α -Fe $\rightarrow \delta$ -Fe bei 910°C

Wenn die Endzersetzungstemperaturen von 220 bzw 210°C sehr genau eingehalten werden, bilden sich jeweils Phasen, die in der ASTM-Kartei [6] nicht aufgeführt sind Lage und geschatzte Intensitat der Rontgeninterferenzen dieser Phasen, deren Zusammensetzung Fe_3Se_2 bzw Fe_3Te_2 sein konnte, sind nachfolgend aufgeführt

Fe₃Se₂ ? 563 mw, 5.39 mw, 4 31 mw, 3 69 w, 3.17 mw, 3.14 mw, 3 05 m, 2 88 m, 2 71 s, 2 67 s, 2.58 vs, 2 49 vs, 2.11 mw.

 Fe_3Te_2 ? 3 72 w, 3 64 vw, 3.33 m, 2 96 s, 2.89 vs, 2 53 w, 2.43 w, 2 27 w, 2 23 vw, 2 17 w, 2 095 m, 1.98 s, 1 695 m

Die *d*-Werte sind bis $4\theta = 100^{\circ}$ angegeben (vs = very strong, s = strong, m = medium, mw = medium weak, w = weak)

Dem Thermogramm des $Fe_2(CO)_6S_2$ (Fig. 4) im Temperaturbereich 25 bis 600°C ist zu entnehmen, dass die Abspaltung von CO von einem endothermen Maximum bei 110°C begleitet ist, und es zeigt, dass bis zu dieser Temperatur 4 CO-Reste abgespalten werden. Der bei 140°C anfallende carbonylfreie Ruckstand besteht aus FeS.

Magnetische Messungen

Die bei 220 und 210°C entstandenen Rückstände der vermutlichen Zusammensetzung Fe_3X_2' (X' = Se, Te) sind auch thermomagnetisch untersucht-worden.

Fig. 5 Die umgekehrte molare Suszeptibilität von Fe3Te2 als Funktion der Temperatur

Die Temperaturabhangigkeit der umgekehrten magnetischen Suszeptibilität von Fe_3Te_2 und des magnetischen Moments pro Formeleinheit für Fe_3X_2 (X = Se, Te) sind in den Fig. 5 und 6 dargestellt

Der Verlauf der Magnetisierung weist für das vermutete Fe_3Se_2 auf eine reine Fe-Komponente hin, die auch in dem entsprechenden Mössbauer-Spektrum [9] anwesend war. Dieses Ergebnis ist eine weitere Stutze für die Instabilität der Fe_3Se_2 -Phase und für die starke Tendenz zu einer Dissoziationsreaktion gemass. $Fe_3Se_2 \rightarrow 2$ FeSe + Fe.

 Fe_3Te_2 weist aber keine Fe-Komponente, sondern eine magnetische Umwandlungstemperatur von 163.7 K auf, die entweder ferro- oder ferrimagnetischer Art sein kann Oberhalb dieser Curie-Temperatur erhalt man im paramagnetischen Bereich eine Curie-Konstante, die einem magnetischen Moment von 98 M_B pro Einheitsformel entspricht In dem magnetisch geordneten Bereich erhält man

bei $35 \leq ein$ Moment von $0.88 M_B$ pro Einheitsformel Das geringe Moment von ungefähl $0.3 M_B$ pro Fe-Atom unterhalb der Temperatur der magnetischen Umwandlung, weist auf eine schwache ferromagnetische Ordnung hin

Das paramagnetische Moment von 3 27 M_B pro Fe-Atom liegt niedriger als im Fe-Metall (4.2 M_B) und im "nackten" Fe²⁺-Ion (4 90 M_B)

Schluss folgerung

Aus der Analyse der Intensitatsverhaltnisse in den Massenspektren kann man schliess en, dass die Stärke der Fe-C-Bindung in Fe₃(CO)₉X₂ in der Reihenfolge X = S < Se < Te zunimmt. Dieser Trend entspricht der Elektronnegativitätsabnahme von S zum Te und bewirkt eine Zunahme der Kovalenz der Fe-C-Bindung in derselben Richtung

Eine frühere Untersuchung [10] der Mössbauer-Spektren von $Fe_3(CO)_9S_2$ und $Fe_3(CO)_9S_2$ und die jungsten Angaben von Franke et al [11] uber die Isomerie-Verschiebung in den Mossbauer-Spektren von $Fe_3(CO)_9Te_2$, $Fe_2(CO)_6Y_2$ (Y = S, Se) spricht auch eindeutig für eine Verstarkung des kovalenten Anteils der Fe--C-Bindung in der Reihenfolge S, Se, Te

Vergleicht man massenspektroskopische und DTA-Ergebnisse, so kann eine gewisse Analogie in der Decarbonylierung von $Fe_3(CO)_9X_2$ und $Fe_2(CO)_6S_2$, festgestellt werden. Die in Fig 7 aufgetragenen relativen Intensitaten der Bruchstücke $Fe_3E_2(CO)_n^*$ (n = 0 bis 9) gegen n weisen einen ahnlichen Verlauf mit 3 Maximi, unabhangig von E, auf Unter der Voraussetzung, dass dieser Verlauf die relative Stabilität der Bruchstucke wiedergibt, sollte man für X = S als stabilste Eruchstucke die Ionen mit n = 8, 7, 3 und Σ beobachten. Die DTA-Kurven

weisen in diesem Zersetzungsbereich eine gewisse Struktur auf, die am stärksten bei Fe₃S₂(CO)₉ ausgepragt ist. In Fig. 1 treten 4 irreversible endotherme Maxima auf, die einen stufenförmigen Abbau beweisen. Vorausgesetzt, dass die DTA-Kurve die relative Stabilität der Zwischenprodukte wiedergibt, ware das erste und zweite Maximum der Entfernung der CO-Gruppe 2—6 zuzuschreiben, das dritte entspricht dann der Entfernung der siebten und das vierte der beiden übrigen CO-Gruppen. Als Endprodukt der Decarbonylierung erhält man für Fe₃(CO)₉S₂ neben Fe das relative stabile FeS. In einem engen Bereich um 210 bzw. 220°C liefern Fe₃(CO)₉X₂' (X' = Se, Te) rontgenographisch unbekannte Phasen, die vermutlich die Zusammensetzung Fe₃X₂ aufweisen

Dank

Der Deutschen Forschungsgemeinschaft danken wir für die Unterstutzung dieser Arbeit mit Personal- und Sachmitteln, sowie der Alexander von Humboldt-Stiftung für ein Forschungsstipendium Für die Messungen der magnetischen Suszeptibilitaten danken wir Herrn A Knulle

Literatur

- 1 W Hieber und J Gruber Z Anorg, Allg Chem 296 (1958) 91
- 2 M K. Chaudhuri, A Haas und N Welcman J Organometal Chem., 85 (1975) 85
- 3 M.K Chaudhuri, A Haas und N Welcman, J Organometal Chem 91 (1975) 81
- 4 A Westgren Z Anorg. Allg. Chem 239 (1938) 82
- 5 J-E Hiller und W Wegener Neues Jahrbuch der Mineralogie, Abh 94 (1960) 1147
- 6 Powder Diffraction File Search Manual Vol. Inorganic 1973, ed. by Joint Committee on Powder Diffraction Standards and American Society for Testing and Materials (ASTM) Pennsylvania, U.S.A.
- 7 M Schieber in P Wohlfarth (Hrsg.), Experimental Magnetochemistry North-Holland Publishing Company, Amsterdam 1967, S 432 und ff
- 8 E Kneller Ferromagnetismus Springer Verlag, Berlin 1962, S 34 und 35
- 9 A.H Muir-Jr und H Wiedersich Bull Amer Phys Soc, 11 (1966) 770
- 10 M Kalvius W Wiedemann, V Zahn und P Kienle Bull. Amer Phys. Soc 9 (1964) 634
- 11 H Franke M Rosenverg, MK Chaudhuri, A. Haas und N. Welcman in Vorbereitung.